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Preface 

Why does a beam of light change its direction 
when passing through the interface between two 
media? Why does the setting sun appear oblate 
on the horizon? What causes mirages? Why 
does a prism disperse sunlight into different 
colours? How can one calculate the angular di- 
mensions of a rainbow? Why do distant objects 
appear close when we view them through a tele- 
scope? What is the structure of the human eye? 
Why does a light ray get broken into two in a 
crystal? Can the plane of the  polarization of a 
ray be turned? Can light rays be bent a t  will? 
I s  the refractive index controllable? 

This book will give the reader answers t o  al l  
these questions. He will get t o  know how the 
law of refraction was discovered, how Newton's 
theory of the refraction of light in the atmo- 
sphere was nearly lost forever, how Newton's 
experiments changed radically the old ideas con- 
cerning the origin of colours, how the telescope 
was invented, how i t  took twenty centuries t o  
understand the anatomy of human vision, and 
how difficult i t  was to  discover the polarization 
of light. 

To make the historical and the physical aspects 
of the book more convincing, the authors have 
introduced a number of problems and their 
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detailed solutions, geometrical constructions, 
and optical diagrams of some instruments and 
devices. No doubt, the reader will get a better 
understanding of some excerpts from the clas- 
sics of physical optics (for example, Newton's 
"Optics" or Huygens' "Treatise on Light") after 
they have been illustrated with the help of dia- 
grams, constructions and concrete problems. 

Thus, as he explores the world of refracted 
rays, the reader will be able to familiarize him- 
self not only with the physics of the topics being 
considered but also with the evolution of some 
of the concepts of physics and their practical 
applications to problems, constructions and 
optical schemes. I t  is the authors' hope that 
this journey will be both instructive and enjoy- 
able. 

The authors are greatly obliged to Professor 
V. A. Fabrikant for his editing and for the 
many valuabl'e suggestions he made. 

L. Tarasov 
A .  Tarasova 
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Chapter One 

Light rays at the interface 
between two media 

A Ring at the Bottom of a Water-Filled Vessel. 
Take a shallow vessel with opaque walls; a mug, 
a t in  or a pan will be suitable. Place a ring 
at  the bottom of the vessel and look at i t  at an  
angle so that  you can see a part of the bottom 

Fig. 1.1. 

without seeing the ring. Ask somebody to fill 
the  vessel with water without moving it .  When 
the  level of the water has reached a certain 
height, you will see the ring lying at the bottom. 
This  unsophisticated experiment is an invari- 
able success. I t  illustrates in  a spectacular 
way the refraction of light rays at the interface 
between water and air (Fig. 1.1). 
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The experiment described above has been 
known for a long time. In  1557 a translation 
of Euclid's "Catoptrics" (3rd century B. C.) 
was published in Paris. I t  contains the  follow- 
ing statement: "If an object is placed at the 
bottom of a vessel so tha t  the  object cannot 
be seen, i t  will come back into view if t h e  
vessel is  filled with water, the  distance re- 
maining unchanged". True, the  experiment 
described has no direct bearing on the  ques- 
tion dealt with in Euclid's book. The latter 
is  devoted to catoptrics, which was a t  that 
time the name of the  branch of optics referring 
to the  reflection of light,  whereas the  refrac- 
tion of light was studied by dioptrics. The expe- 
riment with a ring a t  the  bottom of a vessel i s  
commonly supposed to  have been added by t h e  
translator of the book. But  still ,  there is not a 
shade of doubt that the  experiment is about twenty 
centuries old. I t  is  described in other ancient 
sources, particularly, in  Cleomedes' book (50 
A. D.) "The Circular Theory of the  Heavenly 
Bodies". Cleomedes wrote: "Is i t  not pos- 
sible tha t  a light ray passing through humid 
layers of air should curve ... ? This would be simi- 
lar to the  experiment with a ring placed at  t he  
bottom of a vessel, which cannot be seen in an 
empty vessel, but becomes visible after t he  
vessel is  filled with water." 

Consider quite a modern problem using the ancient 
experiment. I n  a cylindrical vessel whose keight equals the 
diameter of its bottom, there is a disc in the centre of the 
bottom whose diameter is half that of the bottom of the 
vessel. The observer can iust see the edge of the bottom 
(naturally, he cannot see the disc lying at the bottom). 
How much of the vessel's solume has to be filled with water 
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so that the observer can just see the edge of the disc? The 
refracti~~e indez of water n = 415. 

Designate the diameter of the bottom of the vessel 
as D ,  and the level of the water in the vessel a t  which 
the observer can see the edge 01 the disc as H (Fig. 1.2). 

Fig. 1.2. 

The law of the refraction of light rays is described by the 
relation 

sin a -- 
s inp  -fly 

Rewrite the equation A B  + BC = AC as (D - H) tan a + + H tan fJ = 3014 or (bearing in mind that tan a = 1 
under the conditions of the problem) 
D 
-= 4 (1 - tan fJ). 
H 

(1.2) 

Passing from tan fJ to sin fJ and using Eq. (1.1), we have 
s infJ  - sin a - - 1 

tan b= - -. 
f1  -sins 6 fn2-sina a f2na-1 



14 Discussions on Refraction of Light 

Substituting (1.3) into (1.2) we find 

Since n = 413, HID = 0.67. Thus, the observer will be 
able to see the edge of the disc when water fills 0.67 of the 
vessel's volume. 

Ptolemy's Experiments. In the problem con- 
sidered above the  law of refraction (4.1) was 
used. Many investigations conducted over a 

Fig. 1.3. 

long period of t ime preceded the  discovery of th is  
law. They date back to the  2nd century A. D., 
when Ptolemy tried experimentally to determine 
the relationship between the angles which the 
incident and the refracted rays make with the  
normal t o  the  interface between media. 

Ptolemy used a disc graduated in degrees. The 
ends of two rulers were attached to  the  centre of 
the disc, so that  the rulers could be turned about 
the fixed axis. The disc was half-submerged 
in  water (Fig. 1.3), and the rulers were positioned 
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in such a way tha t  they both seemed to  be 
in a straight line when viewed from the top. 
Ptolemy fixed the upper ruler in different posi- 
tions (corresponding to  different values of the  
angle a )  and experimentally found the corre- 
sponding position of the lower ruler (the corre- 
sponding value of the angle p). I t  followed from 
Ptolemy's experiments that  the  ratio sin alsin 
laid within the range from 1.25 to 1.34, i.e. i t  
was not quite constant. Thus, Ptolemy failed t o  
discover the  exact law of the refraction of light. 

The Discovery of the Law of Refraction by 
Snell. Over four centuries passed before the law 
of refraction was at  last established. In  1626 
the Dutch mathematician Snell died. Amidst 
his papers a work was found, in which, in fact, 
he was found to have formulated the law of re- 
fraction. To illustrate Snell's conclusions, turn 
to Fig. 1.4. Assume that  FO is the interface 
between the  media; the  rays are incident on t h e  
interface a t  point 0. The figure shows three 
rays (1, 2, and 3); a,, a,, and a, are their angles 
of incidence, and p,, P,, and p, are the angles 
of refraction. Erect the perpendicular FG at  a 
point F chosen at  random on the interface between 
the media. Designate the points at  which t h e  
refracted rays 1,  2, and 3 cut the perpendicular 
as A,, A,, and As ,  and those a t  which the exten- 
sions of the  incident rays 1, 2, and 3 cut i t  (in 
the figure the extensions are represented by  
dashed lines) as B,, B,, and B,. By experiment 
Snell established that 

OA , --- - 0-4, -3 
OBI OB,  OBa ' 
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Thus, the ratio of the length of the refracted ray 
from the point 0 to where i t  crosses FG to the 
length of the extension of the incident ray  from 0 

Fig. 1.4. 

to  where i t  crosses FG is  constant for every ray 
incident on the interface: 

OA. 
--I = const 0 B i  

(the index i indicates different rays). 
The commonly accepted formula for the  law 

of refraction follows immediately from (1.4). 
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Since OAi sin P i  = FO and OLli sin ai = FO, 
formula (1.4) gives 

sin a. 
-= const. 
sin pi 

'I'hus, the ratio of the sine of the angle of inci- 
dence to the sine of the angle of refraction is 
constant for a given pair of substances. 

Descartes' lnterpretation of the Law of Refrac- 
tion. Descartes' Error. However, for some un- 
known reason Snell did not publish his work. The 
first publication which contains the wording of 
the law of refraction does not belong to Snell but 
to the famous French scientist Ren6 Descartes 
(1596-1650). 

Descartes was interested in physics, mathemat- 
ics and philosophy. He had an original and, 
undoubtedly, vivid personality, and opinions 
about him were many and controversial. Some 
of Descartes' contemporaries accused him of 
making use of Snell's ur~published work on the 
refraction of light. Whether Descartes did or 
did not see Snell's work, the accusation is ground- 
less. The fact is that Descartes formulated the 
law of refraction on the basis of his own ideas 
about the properties of light. He  deduced the 
law of refraction from the assumption that light 
travels at  different velocities in different me- 
dia, i.e. his law was arrived at theoretically. 

Curiously enough, Descartes formulated the 
law of refraction using the erroneous assumption 
that  the  velocity of light increases when i t  
goes from air into a denser medium. Today, we 
find Descartes' ideas about the nature of light 
rather confused and naive. He regarded the 
2-01082 
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propagation of light as the transferrence of pres- 
sure through ether, a substance which, i t  was 
supposed, surrounded and penetrated everything. 
His  work entitled "Dioptrics" reads: "Since there 
is no vacuum in  nature arid since each body has 
pores in  i t ,  i t  i s  iiecessary that  these pores be 

Fig. 1.5. 

filled with matter, that '  is rather very rarefied 
and fluid, and which propagates incessantly from 
celestial luminaries towards us.. .. Light is noth- 
ing but a kind of motion or effect produced in the 
rather rarefied matter filling the pores of the 
bodies." When analysing the  refraction of light, 
Descartes used an analogy with a bal l  thrown 
into water. He claimed t h a t  "light rays conform 
to the  same laws as the  ball". 

Descartes' ideas regarding the refraction of light 
can be illustrated by Fig. 1.5. Assume tha t  u1 
is the  velocity at  which light pressure is trans- 
ferred in the first medium, and u, is the velocity 
in the second medium. Descartes resolved both 
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vectors into two components-one parallel t o  
lhe media interface (the x-component) and one 
perpendicular to the  interface (the y-compo- 
rient). He supposed tha t  when light leaves one 
medium and enters the other i t  is only the 
y-component of v that changes, and in a denser 
medium this component is greater. Putting i t  
differently, we get 

The figure shows that  
sin a - v,,/u, u = 2  
sin fi v,,/v, v, ' 

Descartes' major error was that he supposed 
that  light propagates faster in a denser medium, 
whereas in reality i t  is the other way around. 
"The harder the  particles of a transparent body", 
was Descartes' rather obscure reasoning, "the 
easier they let light pass through, for the light 
does not need to push any particles out of their 
place in the  way a ball pushes aside particles of 
water to make i ts  way through...". 

Descartes' error was put right by Huygens and 
Fermat. 

Huygens's Principle. The famous Dutch phys- 
icist and mathematician Christiaan Huygens 
(1629-1695) considered the propagation of light 
to be a wave process. Huygens supposed tha t  
light was in fact constituted by waves propagat- 
ing through ether. 

He looked upon the propagation of light 
waves in  the  following manner. Assume tha t  t he  
light wave is plane, the cross section of i ts  wave- 
front being a straight line. Let i t  be line AA in  
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Fig. 1.6. Light reaches every point of AA simul- 
taneously and, according t o  Huygens, all  these 
points s tar t  functioning simultaneously as point 
sources of secondary spherical waves. As Huy- 
gens stressed in his "Treatise on Light", "...light 

Fig. 1.6. 

propagates in  consecutive spherical waves". After 
a certain period of time At, these wave-fronts 
will create the situation shown in  Fig. 1.6 by 
dashed semicircles. Draw the  envelope of the 
fronts, which is actually the line BB. I t  corre- 
sponds to  the new position of the plane wave-front. 
I t  can be said that  within the time At the front 
of the light wave has moved from AA to  BB. 
Naturally, every point on B B  can also be regard- 
ed as the source of secondary light waves. I n  
the figure, light rays are represented by arrows. 
At every point in  space a light ray is perpendic- 
ular t o  the wave-front passing through the 
point. 

This method of representing consecutive posi- 
tion of the wave-front became known as  Huy- 
gens' method. I t  is also referred to  as Huygens' 
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principle and is formulated as follows: every 
point reached by a light disturbance becomes in 
its turn the source of secondary waves, the surface 
enveloping these secondary waves a t  a given in- 
stant indicates the position of the actual propagat- 
ing wave-front. 

Huygens' Principle and the Law of Refraction. 
Huygens deduced the law of refraction of light 

Fig. i 7. 

using his principle (Fig. 1.7). Assume that  a 
plane light wave is incident at  an angle a on a 
surface AIA,, which is the interface between two 
media, for example, water and air. Let the ve- 
locity of light in the first medium (air) be v,, 
and the velocity in the second medium (water) 
be v,. According to  Huygens' correct reasoning, 
v1 > v,. Four light rays are shown by arrows in 
the figure; the line AIB, (dotted) shows where 
the wave-front is at the moment when the ray  1 
reaches the  interface between the media. Ac- 
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cording to Huygens, at  the same moment, the 
point A, becomes the source of a secondary spher- 
ical wave. Note that this wave continues to 
propagate in both the first and second media, 
generating reflected and refracted bundles of 
rays, respectively. We shall confine ourselves 
to  the refracted waves. The dashed semicircle 
with its centre at  A, shows the front of the 
spherical wave under consideration after a period 
of time At, during which the ray 4 travels from 
B, t o  A,. We can write tha t  

When the ray 2 reaches the interface, A, becomes 
the  source of a secondary wave. The semicircle 
with the centre at A, (dotted) represents the  
front of this wave after a certain period of time 
At,, during which the ray 4 travels from B, to 
A,. Hence At, = B,A,Iv, = A,C,Iv,. When the 
interface is reached by a ray 3, point A, becomes 
the source of a secondary wave. The dotted 
semicircle with its centre at  A, is actually the 
front of this wave after At,, during which the 
ray 4 travels from B, t o  A,, hence At, = 

= B,A,Iv, = A,C8Iv,. The line C,A, is the 
envelope of the semicircles shown in the figure: 
i t  corresponds to the wave-front of the refracted 
bundle of rays a t  the moment the  ray 4 reaches 
the  interface. I t  is clear from the figure that  

u 

A C  B I A ~  , sin b = -', and therefore sin a = - 
A, -44 '41'44 

- """ - -- B1A4 Using (1.8), we have sin f5 - AIC1 ' 
sin a - v, 
gins-v,' 
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Unlike (1.7), the correct relation between the 
velocities is written here. 

I n  this way the constant relation sin a l s in  
discovered by Snell was explained from two op- 
posing theoretical premises: Descartes' erro- 
neous assumption that  the velocity of light in 
a dense medium is greater than i t  is in air and 
the correct though opposite assumption made by 
Huygens. You can thus see how one experiment 
can be used to substantiate different theories. 
I t  stands to  reason that  a theory is always based 
on and checked against an experiment. However, 
one sho~ild refrain from putting forward a new 
theory if i t  is based upon insufficient number of 
experiments. The history of physics has records 
of other examples, apart from Descartes' error, 
when theories formulated on the  basis of insuf- 
ficient experimental data were later proved to  
1)c incorrect by further tests. The creation of a 
new theory calls for a well-considered system of 
experiments to check i t  for viability as well as 
its compliance with other known facts and theo- 
ries. A brilliant example here is the system of 
experiments with prisms the great Isaac Newton 
carried out.  He  used them to  create his famous 
theory of the origin of colour. This will be given 
special consideration later (in Chapter Five), 
but now we should go back to the  law of refrac- 
tion. 

We introduce the refractive index n for the given 
medium. According to the present-day views 
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where c is the velocity of light in vacuum (this 
fundamental physical constant equals 2.9979 X 
X 10s mls), and v is the velocity of light in the 
medium under consideration. TJsing (1.10) and 
(1.9), we can rewrite the' l a ~ 7  of refraction as 
follows: 

s i n a  n - 2  
sin fi - n, ' 
where nl and n, are the refractive indices of 
the  first and the second media, respectively. If 
light passes from air t o  a denser medium, for 
example, water or glass, the velocity of light in 
air can be assumed t o  be equal t o  c ,  i.e. the 
refractive index of air is unity. Then, we can 
write 

sin a -- 
s i n ~  - n 7  

where n i s  the refractive index of the denser 
medium. 

Fermat's Principle (the Principle of Least Time). 
However, let us go back to  the 17th century to  
familiarize ourselves with the investigation of 
Pierre Fermat (1601-1665), a well-knownFrench 
mathematician. Fermat became interested in 
the refraction of light some years before Huy- 
gens. H e  came up with a general principle con- 
cerning the way light rays travel in different 
circumstances and, in particular, when light 
rays pass through an interface between two me- 
dia. This  i s  known as Ferm,at's principle or the  
principle of least t ime. The wording of the prin- 
ciple is: the actual path of the propagation of light 
( the traiectory of a light ray) is  the path which, 
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can be covered by light wi thin  the least t ime in 
comparison with all other hypothetical paths 
between the same points. 

Evidently, Fermat first conceived his idea 
when considering the  statement of Hero of Ale- 

' .\ 
'\ 
'\ -. 

'-1 

Fig. 1.8. 

xandria (2nd century B. C.) that  reflected light 
travels from one point to another along the short- 
est path. True, i t  is clear from Fig. 1.8 that  
ARC which complies with the law of reflection 
is shorter than any other imaginable path from 
the point A to  C, for example, the path ADC. 
The length of ARC equals the length of the 
line AC1, whereas the length of ADC [actually 
equals the  length of the broken line ADC, (C, 
is the mirror image of the point C). 

I t  i s  quite obvious that  the  refraction of light 
does not obey the principle of the shortest path. 
Taking this  fact into consideration, Fermat sug- 
gested that  the principle of shortest path be 
replaced with the principle of least tirne. Fermat's 
principle explains the reflection of light in a very 
clear way. Besides, unlike the principle of 
shortest path, i t  accounts for the refraction of 
light as well, 
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The well-known "Feynman Lectures on Phys- 
ics" have the following passage: "To illustrate 
that  the best thing t o  do is not just to go in a 
straight line, let us  ima-gine that  a beautiful 
girl  has fallen out of a boat, and she is scream- 
in? for help in the water at  point B. The line 

Fig. 1.9. 

marked X is the shoreline (Fig. 1.9). We arc at 
point A on land, and we see the accident, and 
we can run and can also swim. What do we do? 
Do we go in a straight line? ... By using a l i t t le  
intelligence we would realize that  i t  would be 
advantageous to  travel a l i t t le  greater distance 
on land in  order to decrease the distance in the 
water, because we go much slower in  the water." 

Deduction of the Law of Refraction from Fernlat's 
Principle. Now let us reason absolutely rigorously. Let 
the plane S he the interface between medium I and 
medium 2 with the refractive indices n, = clv, and 
nz = clv, (Fig. 1.10~). A:jsume, as usual, that n, < n,. 
Two points are given-one above the plane S (point A), 
the other under the plane S (point B). The various dis- 
tances are: AA, - h,, BB, = h,, A,Bl = 1. We must 
find the path from A to B which can be covered by light 
faster than il caE cover any other hypothetical path. 
Clearly, th s pat1 must consist of two straight lines, viz, 
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A 0  in medium 1 and OB in medium 2; the point 0 in the 
~llane S has to be found. 

First of all, it  follows from Fermat's principle that 
the point O must lie on the intersection of S and a plane 
I ) ,  trhich is perpendiculaato Sand passes through!A and B. 

Pig. 1.10. 

Indeed, let us assume that this point does not lie in the 
plane P; let this be point 0, in Fig. 1.10b. Drop the per- 
pendicular 0!0, from 0, onto P. Since AO, < AO, and 
RO, < BO,, it is clear that the time required to traverse 
AOzR is less than that needed to cover the path A0,B. 
Thus, using Fermat's principle, we see that the first 
law of refraction is observed: the incident and tne re- 
fracted rays lie in the same plane as the perpendicular 
to the interface at the point where the ray is refracted. 
This plane is the plane P in Fig. 1.10b; it is called the 
plane of incidence. 

Now let us consider light rays in the plane of incidence 
(Fig. 1.10~).  Designate AIO as x and OBI = 1 - x. The 
liinu it takes a my to travel from A to 0 and then Eroni 0 
lo B is 

The time depends on the value of x. According to Ferrnat's 
principle, the value of x must minimize the time T. Those 
familiar with basic mathematical analysis know that at 
this value of x the derivative dTldx equals zero: 
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Substituting (1.17) for AC and CB and using 
(1.11) (remembering that  q = xll), we have 

Obviously, T, > T whatever the  sign of x, 
which is what we set out to prove. 

Now let  us use Fermat's principle to solve the following 
problem. There is a coin at the bottom of a reservoir which 
has a depth H .  W e  view i t  from above along a vertical line. 

(a>  
Fig. 1.12. 

What is the apparent distance between the urater surjace and 
the coin? The refractive index of water n is given. 

Figure 1.12~ shows a greatly magnified crystalline 
lens of the observer. Two light rays froin the coin enter 
it. One follows a strictly vertical path (it is not refracted), 

i111d the other enters i t  a t  a very small angle to the vertical 
(~ l i i s  ray is  refracted a t  the interface between the water 
iu~d  air). The observer sees the coin where the extensions 
ol the diverging rays arriving a t  the eye converge. The 
ligure shows that  this happens a t  the point C. So, the 
distance from the water surface to the coin is OC and we 
designate, i t  as y. 

To Cind the value of y, we have to know the relation- 
yliip between the angles a and fi, which follows from the 
law of refraction sin als in f i  = n. Since in  this instance 
Lhe angles a and f i  are very small, we can salely use the 
approximate relations 

s i u u  = tancr = a, sin f i  = tan f i  = f i .  (1.18) 

(Note tha t  in  (1.18) the angles must be .measured in 
radians and not degrees.) Thus, i n  the problem under con- 
sideration, the law ol relraction assumes a particularly 
simple form: 

I t  follows from basic geometry (see Fig. 1.12) that Hfi = x 
and ya = x; so Hfi = ya. With regard to (1.19), we get 

Our problem turned out quite simple provided we are 
lamiliar with the law ol refraction. Now let us assume 
that we had no knowledge of the law of refraction. Fermat's 
principle would enable us to deduce (1.19) and through 
lhis resolve the problem. 

The light ray travels from A to B ;  assume that OD = - h ,  and D B  = 1 (see Fig. 1.12b). Designate the point 
; ~ t  which the ray is refracted as 0,; 0 0 , . =  x. We must 
determine the value o l  x for which the tlnie required to 
traverse the path AO,B is the least. The time T of transit 
over this path is descrihed by the equation 
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where c is the velocity of light i n  vacuum (we hold that 
the velocity of light in  air  is the same). Using (1 .18) ,  
we yet 

Since f << 1 ,  the following approximate relation holds 
true: 

1 -- 1+E. (1.23)  
1 - f -  

Making use of (1 .22)  and (1 .23) ,  we can write (1.21) as 

Since 
1-27 Z a=- and B=-,  

11 

we have 

We must determine the value of z for which T is the least. 
I n  other words, we must find the value of x for which the 
following function reaches i ts  minimum: 

It is  known that  the x-coordinate of the vertex of the 
parabola'; y = az2 + b z  + c is b/2a .  Consequently, the 
value of z we are looking for equals 

In 
Substituting (1 .25)  into ( 1 . 2 4 ) ,  we have a = - 7th +FI' 

p=- ' whence a/p = n. 
nh+ H' 
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Total Internal Reflection of Light. Critical 
Angle of Reflection. Up to now, while examin- 
ing the refractiou of light a t  an interface, we 
have virtually disregarded the reflection of 
light from the interface which occurs simul- 
taneously with refraction. Strictly speaking, the 
Lwo phenomena (refraction and reflection of 
light) should be considered together. This was 
proved in  a most convincing way by the out- 
standing French scientist Augustin Jean Fresnel 
(1788-1827) who obtained the   elations ships for 
Lhe intensity of the refracted and reflected beams 
of light with regard to the incident.beam's in- 
tensity, the magnitude of the angle of incidence, 
and the polarization of the light. These rela- 
Lionships are known today as Fresnel's formulae. 
They have preserved their original form in 
modern optics. 

Fresnel's formulae go beyond the confines of 
Lhis book because we would need to  use the elec- 
tromagnetic theory of light t o  interpret them. 
Besides, polarization of light needs to be dis- 
cussed separately. That i s  why we shall l imit 
ourselves to  a few general remarks concerning 
the interrelations between the intensities of 
Lhe refracted and reflected beams of light, 
and examine the case when light passes from a 
medium with a higher refractive ilidex to  a 
medium with a lower one (in other words, from 
a dense to a less dense medium). This case i s  of 
special interest t o  us as i t  illustrates the phe- 
nomenon of total internal reflection. 

Figure 1.13 shows four cases corresponding to 
different magnitudes of the angle of incidence a 
of a light beam. Light falls on an interface be- 




